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Abstract

In causal mediation analysis, the natural direct and indirect effects (natural

effects) are nonparametrically unidentifiable in the presence of treatment-induced

confounding, which motivated the development of randomized interventional ana-

logues (RIAs) of the natural effects. Being easier to identify, the RIAs are becoming

widely used in practice. However, applied researchers often interpret RIA estimates

as if they were the natural effects, even though the RIAs can be poor proxies for

the natural effects. This calls for practical and theoretical guidance on when the

RIAs differ from or coincide with the natural effects, which this paper aims to

address. We develop the first empirical test to detect the divergence between the

natural effects and their RIAs under the weak assumptions sufficient for identifying

the RIAs and illustrate the test using the Moving to Opportunity Study. We also

provide new theoretical insights on the relationship between the natural effects

and the RIAs both using a covariance formulation and from a structural equation

perspective. Additionally, we discuss previously undocumented connections between

the natural effects, the RIAs, and estimands in instrumental variable analysis and

Wilcoxon-Mann-Whitney tests.
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1 Introduction

1.1 Background

Causal mediation analysis explains the mechanisms of a total causal effect by decomposing it

into direct and indirect effects in terms of some mediators. The direct effect is the part of the

total effect that does not go through the mediators of interest, and the indirect effect is the part

that does. As a central task in the social and health sciences, causal mediation analysis is widely

used in applied research.

We adopt the conventional notation in causal mediation analysis. Y is the observed outcome,

A is a binary treatment (or any pair of two values for a multivalued treatment) labelled as

{0, 1}, and M is a vector of mediators. Ya and Ma are respectively the potential values of Y

and M under the assignment of treatment value a. We further define two groups of confounders

that may be empty, C is a vector of baseline confounders, and L is a vector of post-treatment

confounders. Figure 1 illustrates the relationship between variables, when any variable may

affect any temporally subsequent variables.

A M YC

L

Figure 1: Variable set-up in causal mediation analysis

The canonical approach of causal mediation analysis decomposes the total effect (TE) into

the natural indirect effect (NIE) and the natural direct effect (NDE) (Robins and Greenland,

1992; Pearl, 2001).

E(Y1 − Y0)︸ ︷︷ ︸
TE

= E(Y1,M1 − Y0,M0)︸ ︷︷ ︸
TE

= E(Y1,M1 − Y1,M0)︸ ︷︷ ︸
NIE

+E(Y1,M0 − Y0,M0)︸ ︷︷ ︸
NDE

,

where Ya,Ma′ denotes the potential outcome of Y under the assignment of treatment a and

the mediator value that would be realized under the assignment of treatment a′. The NIE is

defined by fixing treatment assignment at 1 and varying the mediator assignment from M0 to M1,

capturing the part of the total effect that operates through M . The NDE is defined by varying

the treatment assignment from 0 to 1 but holding mediator assignment at the baseline mediator
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value, capturing the part of the total effect that does not operate through M . Importantly,

the natural effects (NIE and NDE) aggregate individual-level causal mechanisms, as they are

averages of individual-level potential mediators, M1 and M0.

The natural effects are notoriously difficult to identify. Without parametric assumptions,

they are unidentifiable when there exists any treatment-induced confounder L, regardless of

whether L is observed (Robins, 2003; Avin et al., 2005). Therefore, the application of natural

effects is challenging in many empirical settings, as ruling out L altogether is often impossible,

and parametric assumptions are often hard to justify.

Motivated by the difficulty of identifying the natural effects, an alternative decomposition

has been proposed, whose nonparametric identification does not require the absence of treatment-

induced confounders (VanderWeele et al., 2014). This alternative decomposition is based on the

randomized interventional analogues (RIA) of the TE, the NIE, and the NDE, namely the TER,

the NIER, and the NDER:

E(Y1,G1 − Y0,G0)︸ ︷︷ ︸
TER

= E(Y1,G1 − Y1,G0)︸ ︷︷ ︸
NIER

+E(Y1,G0 − Y0,G0)︸ ︷︷ ︸
NDER

,

where Ga′ is a value randomly drawn from the mediator distribution that would be realized

under the assignment of treatment value a′ given C, and Ya,Ga′ is the potential outcome of Y

under the assignment of the treatment value a and the mediator value Ga′ . Clearly, the RIAs

differ from the natural effects in mediator assignments. Instead of M1 and M0, the mediator

assignments for the RIAs are G1 and G0. As G1 and G0 are random draws from population

distributions, the RIAs are not aggregations of individual-level causal contrasts like the natural

effects.

Seen as much less demanding and more widely applicable than the natural effects, the RIAs

have become popular in empirical research. In practice, applied researchers frequently estimate

the RIAs as proxies of the natural effects. In fact, the RIA estimates are often interpreted as if

they were estimates of the natural effects. Sarvet et al. (2023) reviewed 16 applied studies that

estimate RIAs, all of which contain interpretive statements that elide the difference between

the RIAs and the natural effects. Indeed, the methodological literature has encouraged this

ambiguity. First, the RIAs are named as analogues to begin with (VanderWeele et al., 2014).

Second, VanderWeele and Tchetgen Tchetgen (2017) write that “it will only be in extremely

unusual settings that the interventional analogue is non-zero, with there being no natural indirect

effects.”

However, there are reasons to suspect that the RIAs can be poor proxies of the natural effects.
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Figure 2: Illustration of possible divergence between the natural mediation estimands and
their RIAs. Panel (a) depicts NIE and NIER, and Panel (b) depicts NDE and NDER. The
DGP is as follows. L ∼ N (A, 1); M ∼ expit(A+L+ bAL); Y ∼ N (A+L+M +LM, 1).
The x axis is the coefficient of the A-L interaction in the generative model for M . In
Panel (a), the shaded area indicates sign reversal between NIE and NIER.

Unlike the natural effects, they are not individual-level explanatory mechanisms. Formalizing

this intuition, Miles (2023) proposes a set of null criteria that valid indirect effect measures

should satisfy and shows that the NIE is valid by these criteria while the NIER is not. In

particular, the NIER can be nonzero even if the mediator does not “mediate” the treatment

effect for any individual (more detail in Section 4.1). In addition, it has been frequently noted

in the methodological literature that the NIER and the NDER do not generally sum to the TE,

which is problematic because the canonical task of causal mediation analysis is to understand

the TE (Vansteelandt and Daniel, 2017; Nguyen et al., 2021).

Beyond the violation of null criteria, which focuses on a knife-edge scenario, we draw attention

to possible quantitative differences between the natural effects and the RIAs in a wide range

of data generating processes (DGPs). These quantitative differences may be large and even

involve sign reversal. In the illustration of Figure 2, data are simulated according to a set of

very simple and seemingly innocuous DGPs. By varying one parameter of the DGP, we observe

areas of substantial divergence and even sign reversal, where the RIAs can hardly be used to

draw conclusions about the natural effects.

Therefore, it is natural to ask when the natural effects differ from their RIAs. If they are

identical or at least close to each other, then it might be warranted to interpret estimates of the

RIAs as the natural effects, as is common in empirical research. Conversely, if they substantially

differ, then more caution and precision in interpretation is called for. In this paper, we answer

this question by developing the first empirical test for the difference between the natural effects

and their RIAs and by introducing two complementary theoretical perspectives to explain when
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and how they differ.

1.2 Contributions

We propose a novel test for the differences between the NIE, the NDE, and their respective RIAs.

The empirical testability of these differences may be surprising, because under the standard

assumptions for identifying the NIE and the NDE, the natural effects necessarily coincide with

their RIAs (VanderWeele and Tchetgen Tchetgen, 2017, p.921). On the other hand, under

the standard assumptions identifying the NIER and the NDER, the NIE and the NDE are

unidentified. Thus, it may appear that under no set of common assumptions can one test the

differences. However, our test is made possible by leveraging two simple facts. First, the TE and

the TER are identified under the standard assumptions for the NIER and the NDER. Second,

when TE − TER ̸= 0, it is necessarily the case that either NIE ̸= NIER or NDE ≠ NDER.

Hence, instead of hoping that “the natural and interventional effects may coincide empirically”

(Loh et al., 2020), we can actually test their divergence by testing TE− TER = 0 under weak

identifying assumptions that are sufficient for the RIAs but not the natural effects.

We also theoretically clarify and illustrate the substantive conditions under which the natural

effects differ from or coincide with their RIAs. We do so from a nonparametric covariance

perspective and a structural equations perspective. First, we derive a covariance-based represen-

tation of the differences between the natural effects and their RIAs. Second, we derive parametric

constraints on the structural equations generating the data under which the the natural effects

will coincide with the RIAs. These two novel perspectives provide exact and intuitive insights on

the substantive mechanisms underpinning the relationship between the natural effects and the

RIAs. Miles (2023) focuses on the null criteria violation of the NIER using one specific numerical

counterexample. With two new analytic perspectives that are general and intuitive, we thus

demystify and go beyond Miles’ (2023) results. Additionally, we also present the relationship

between the natural effects and the organic effects of Lok (2016) from the covariance perspective.

The remainder of this paper is organized as follows. In Section 2, we review some standard

assumptions in causal mediation analysis. In Section 3, we present our empirical test for the

differences between the natural effects and the RIAs and apply it to the Moving to Opportunity

(MTO) study. Section 4 and 5, respectively, introduce the covariance perspective and the

structural equation perspective. Section 6 discusses related estimands, including those in the

instrumental variable (IV) settings and those underlying the Wilcoxon-Mann-Whitney tests. We

present novel results that unify causal mediation analysis with these other fields of causal inference.

Section 7 concluds. Technical proofs are collected in the appendix. R code for simulating
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Figure 2 and empirical data analysis in Section 3 can be found at https://github.com/ang-

yu/diff naturals rias.

2 Review of conventional mediation assumptions

We review conventional assumptions included in the literature of causal mediation analysis.

Assumption 1 (Consistency). f(Ma | C, a) = f(M | C, a) and E(Ya,m | C, a, L,m) = E(Y |

C, a, L,m), for all a and m, where f(·) is the density function.

Assumption 2 (Ignorability of A conditional on C). Ya,m |= A | C for all a and m; Ma |= A | C

for all a.

Assumption 3 (Ignorability of M conditional on C,A,L). Ya,m |= M | C,A = a, L for all a and

m.

Assumption 4 (Ignorability of M conditional on C,A). Ya,m |=M | C,A = a for all a and m.

Assumption 5 (Cross-world Independence). Ya,m |= Ma′ | C for all a, a′, and m.

Assumption 1 links the potential values of the mediator M and the outcome Y to their

observed values. Assumption 2 requires the treatment A to be ignorable conditional on baseline

confounders C. Assumption 3 states that M is conditionally ignorable given both C and

post-treatment confounders L, as well as the treatment. Assumption 4 imposes conditional

ignorability of the mediator given only baseline confounders and the treatment, which is stronger

than Assumption 3. Finally, Assumption 5 requires the conditional independence between the

potential outcomes Ya,m and potential mediators Ma′ under two possibly different treatment

assignments a and a′, hence its name (cross-world independence).

In the literature, Assumptions 1, 2, and 3, are the standard identifying assumptions for the

RIAs (VanderWeele et al., 2014), while Assumptions 1, 2, 4, and 5 are the standard assumptions

for identifying the NIE and the NDE (Pearl, 2001; VanderWeele, 2015, p.463-4; See Imai, Keele,

and Yamamoto, 2010 for a slightly stronger version). Notably, the cross-world independence

assumption requires the absence of any post-treatment confounder of the mediator-outcome

relationship (L = ∅) (Robins, 2003; Avin et al., 2005; Andrews and Didelez, 2021). Hence, it is

clear that the standard assumptions for the RIAs are weaker, as they allow for the existence of

post-treatment confounders, L. Finally, when the cross-world independence assumption holds,

the natural effects are necessarily equivalent to their RIAs (VanderWeele and Tchetgen Tchetgen,

2017).
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3 Empirical test

We propose to use the empirical estimate of TE − TER as a test statistic for the divergence

between the NIE and the NIER and between the NDE and the NDER. This test relies on the fact

that if TE− TER ̸= 0, it is necessarily true that either NIE ≠ NIER or NDE ̸= NDER, or both.

Thus, if we reject the null hypothesis that TE−TER = 0, we also reject the null hypothesis that

NIE = NIER and NDE = NDER. In addition, since |TE−TER| ≤ |NIE−NIER|+|NDE−NDER|

by the triangle inequality, |TE− TER| also provides a lower bound for the sum of the absolute

differences between the NIE and the NIER and between the NDE and the NDER.

Under Assumptions 1, 2 and 3, TE−TER = E(Y1)−E(Y0)−E(Y1,G1)+E(Y0,G0) is identified

by the functionals below (VanderWeele et al., 2014).

E(Ya) =

∫∫
yf(y | c, a)f(c)dydc

E(Ya,Ga) =

∫∫∫∫
yf(y | c, a, l,m)f(m | c, a)f(l | c, a)f(c)dydmdldc.

Hence, importantly, our test parameter, TE− TER, is nonparametrically identifiable even when

there are treatment-induced confounders, L, and Assumption 5 is invalid. This is because

although the NIE and the NDE are not nonparametrically identifiable under treatment-induced

confounding, their sum is.

The task now is to estimate TE− TER. This can be done using various estimators of TE

and TER. For TE, various regression, weighting, or efficient influence function (EIF)-based

estimators are well-known and can be found in standard textbooks of causal inference (e.g.,

Hernán and Robins, 2020). For TER, VanderWeele et al. (2014) and Wodtke and Zhou (2020)

introduced parametric estimators via weighting and regression, respectively. These estimators

are prone to misspecification biases, because they require the functional form assumptions of

all component models be satisfied. In response to the disadvantage of parametric estimators,

Dı́az et al. (2021) and Rudolph et al. (2024) developed nonparametric estimators based on

the EIF of TER. These estimators do not impose functional form assumptions and are robust

against inconsistent estimation of some component models. However, these estimators are only

computationally tractable when either L or M is discrete and low-dimensional.

We recommend a Riesz Regression (RR) approach built on the recent works of Chernozhukov

et al. (2024) and Liu et al. (2024), who developed estimators for TE and TER that can be readily

repurposed for TE−TER. The RR approach has multiple desirable properties. As an EIF-based

approach, it is nonparametric and doubly robust, hence not prone to misspecification in functional

form. This approach also attains semiparametric efficiency and asymptotic normality under
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Estimand Estimate 95% Confidence Interval
TE 0.0532 (0.0408, 0.0655)
TER 0.0633 (0.0517, 0.0749)

TE− TER -0.0101 (-0.0158, -0.0045)

Table 1: Empirical estimates from the MTO study. N = 3270. The treatment is the
receipt of a randomized housing voucher. The mediators are neighborhood poverty and
the number of residential moves. The outcome is mental health. Estimation is done by
the Riesz Regression approach. Confidence intervals are Wald-type and calculated using
the estimated efficient influence functions of the estimands.

relatively mild conditions. Furthermore, compared with previous EIF-based estimators of TER,

the RR approach can very generally accommodate arbitrary numbers and types of L and M

variables. For the technical details of the RR approach, we refer readers to Chernozhukov et al.

(2024) and Liu et al. (2024). Practically, we extend the {crumble} R package developed by

Williams and Dı́az (2024) to facilitate easy implementation of our test. The extended R package

is available for download from the Github repository https://github.com/ang-yu/ria test.

3.1 Empirical illustration

We apply our test to a mediation analysis of the Moving to Opportunity (MTO) study, a

large-scale longitudinal randomized control trial conducted by the Department of Housing and

Urban Development of the United States (Ludwig et al., 2013; Kling et al., 2005). We follow the

conceptual set-up of Rudolph et al. (2021) and Rudolph et al. (2024), who estimated the RIAs.1

The treatment (A) is a binary indicator of whether or not a family living in a high-poverty

neighborhood was randomized to receive a Section 8 housing voucher that allowed them to move

to a less poor neighborhood. We consider two mediators (M) measured between 10 and 15 years

of follow up, neighborhood poverty and the number of residential moves. The outcome (Y ) is a

composite score of mental health (Ludwig et al., 2013). For causal identification, we account for a

post-treatment confounder (L) which is whether the family used the voucher to move within the 90

days allotted. We also account for 12 baseline confounders (C), which capture baseline household

socioeconomic and demographic characteristics, as well as neighborhood-related perceptions and

aspirations.

We implement our test using the RR approach introduced in last subsection. For confidence

intervals, we leverage the asymptotic normality of the estimators and estimate the variance

using the mean squared estimated efficient influence functions (Chernozhukov et al., 2024; Liu

1Due to lack of access to the restricted-use dataset, we follow their variable and sample choices only
approximately. Hence, our estimates should be regarded as purely illustrative.
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et al., 2024). We present our estimates in Table 1. Our estimate of TE− TER is significantly

different from 0. Therefore, we reject the null hypothesis that NIE = NIER and NDE = NDER.

In this empirical example, one should not interpret the RIA estimates as the natural effects.

Furthermore, the sum of the absolute differences between the NIE and the NIER and between

the NDE and the NDER is greater than |TE− TER|, which is estimated to be 0.0101.

4 Covariance perspective

We present a covariance-based representation of the differences between the natural effects and

their RIAs. We first focus on the simple case with a scalar binary mediator and no baseline

confounder C. This simple case most easily captures our core intuition. Next, we generalize the

covariance representation to vector-valued mediators with arbitrary distributions and baseline

confounders. The expressions are derived using only the definitions of the estimands, without

any identifying assumptions or functional form restrictions.

4.1 Single binary mediator, no baseline confounders

Proposition 1. When C = ∅, and the support of M is {0, 1},

NIE−NIER = Cov(M1 −M0, Y1,1 − Y1,0)

NDE−NDER = Cov(M0, Y1,1 − Y1,0 − Y0,1 + Y0,0).

Also, NIE = E[(M1 −M0)(Y1,1 − Y1,0)], and NIER = E(M1 −M0) E(Y1,1 − Y1,0).

First, the difference between the NIE and the NIER equals the covariance between the

treatment effect on the mediator (M1 −M0) and a mediator effect on the outcome (Y1,1 − Y1,0).

Thus, if there are L variables that both mediate the first effect and modify the second effect,

the NIE will differ from the NIER. In the MTO example, the effect of voucher assignment (A)

should be mediated via voucher take-up (L), while voucher take-up may modify increase the

effect of moving to a lower-poverty neighborhood (M) by reducing the cost associated with

the latter. In that case, the covariance between the treatment effect on the mediator and the

mediator effect on the outcome will be positive.2

2The fact that NIER = E(M1 − M0) E(Y1,1 − Y1,0) attests that NIER is in fact aligned with the
traditional product method of estimating direct effects (Baron and Kenny, 1986), in the sense that it
is the product of two average effects. Glynn (2012, p.260) discusses the fallacy of using the product
method to estimate the NIE. However, unlike our nonparametric analysis, Glynn’s (2012) results are
highly parametric and hence less general.
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Second, the difference between the NDE and the NDER is the covariance between the

mediator value under control (M0) and the interaction effect between the treatment and the

mediator on the outcome (Y1,1 − Y1,0 − Y0,1 + Y0,0). As it seems implausible that the assignment

of the voucher would change the effect of living in a low-poverty neighborhood on mental health,

we might theoretically rule out deviation of the NDER from the NDE in our empirical example.

In that case, the estimated TE− TER would capture NIE−NIER alone.

Generally, the natural effects and the RIAs differ to the extent that the potential mediators

(Ma) and the potential outcomes (Ya′,m) are correlated with each other. This makes sense as

the RIAs are defined using random draws of potential mediators, Ga, that are independent of

Ya′,m, whereas the natural effects do not remove the naturally occurring dependency between

the potential mediators and the potential outcomes.

Miles (2023) proposes a set of mediation null criteria. In particular, the definition of his

“sharper mediation null” condition is: For each individual in the population, either M1 = M0 or

Ya,m = Ya,m′ for all a, m, and m′. The corresponding null criterion states that a valid measure of

indirect effect should be zero when the sharper mediation null condition is true. By Proposition

1, the NIE clearly satisfies this criterion, while the NIER does not. For example, if half of the

population has M1 −M0 = 1 and Y1,1 − Y1,0 = 0 while the other half has M1 −M0 = 0 and

Y1,1 − Y1,0 = 1, the NIE will be zero, but the NIER will be 1/4.

In terms of the NIE and the NIER, Proposition 1 expands on and demystifies Miles (2023)

in two ways. First, the null condition is arguably a knife-edge scenario. Our result, in contrast,

provides a complete characterization of the difference between NIE and the NIER, regardless of

whether the null condition holds. Second, Miles (2023) proves that the NIER does not satisfy the

null criterion using a specific numerical counterexample, which might be viewed as a contrived

example (Miles, 2023, p.1163). By contrast, Proposition 1 analytically reveals why and when

the NIER deviates from the null criterion: it is because the NIER omits the natural dependency

between the treatment effect on the mediator and the mediator effect on the outcome, which

happens when some post-treatment confounders modify the mediator effect on the outcome. To

the extent that this is common in practice, there is nothing “contrived” in the NIER’s violation

of the null criterion.

4.2 General case

In last subsection, we focused on the case of a binary M and no baseline confounder C. Now we

generalize our results to the case where there are arbitrary vectors of mediators and baseline

confounders. Again, we do not impose any identifying assumptions or parametric restrictions.
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Proposition 2.

NIE−NIER =
∑
m∈M

E{Cov[1(M1 = m)− 1(M0 = m), Y1,m | C]}

NDE−NDER =
∑
m∈M

E{Cov[1(M0 = m), Y1,m − Y0,m | C]},

where 1(·) is the indicator function, and M is the support of M . The relationships above

directly hold for multivalued discrete mediators, but they also hold for continuous mediators if

summations are replaced with integrals and the indicator function is replaced with the Dirac

delta function.

We thus obtain a covariance-based representation analogous to Proposition 1. Here, the

building blocks are conditional covariances between the potential mediators (Ma) and the potential

outcomes (Ya′,m) given baseline confounders C. We further summarize the c- and m-specific

covariances by taking expectation over the distribution of C and taking sum over the support of

M . Again, the natural effects and the RIAs generally differ due to the dependency between the

mediator and outcome potential values conditional on baseline confounders. Clearly, the natural

effects and the RIAs coincide when the cross-world independence assumption (Assumption 5) is

satisfied.

An alternative RIA-based decomposition is developed by Lok (2016) and Lok and Bosch

(2021) In this decomposition, the TE is decomposed to what are called the organic indirect and

direct effects (NIEorganic and NDEorganic).

E(Y1 − Y0)︸ ︷︷ ︸
TE

= E(Y1 − Y1,G0)︸ ︷︷ ︸
NIEorganic

+E(Y1,G0 − Y0)︸ ︷︷ ︸
NDEorganic

.

We again show a corresponding covariance representation in the general case.3

Proposition 3.

NIE−NIEorganic = −
∑
m∈M

E{Cov[1(M0 = m), Y1,m | C]}

NDE−NDEorganic =
∑
m∈M

E{Cov[1(M0 = m), Y1,m | C]}.

3Zheng and Van Der Laan (2017) propose another related decomposition (also see Nguyen et al., 2022,
p.264). The intervention underlying this decomposition involves assigning to people with C = c, La = l
values of mediator randomly drawn from the distribution of Ma′ conditional on C = c, La′ = l. The
differences between the natural effects and components of this decomposition do not have a covariance
representation. This is because the way L enters into the NIE’s counterpart in this decomposition makes
it the path-specific effect through M but not L (see Appendix S2 in Miles [2003] and Appendix S8 in
Dı́az et al. [2021]). Thus, the components of this decomposition are conceptually further removed from
the natural effects.
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5 Structural equation perspective

To further facilitate substantive reasoning on the differences between the RIAs and the natural

effects, we illustrate some specific data generating processes (DGPs) that would make the NDE

coincide with the NDER or the NIE with the NIER. We express these DGPs using structural

equations (generative models) with parametric constraints. Throughout this section, we do not

restrict the dimension or the distribution of mediators.

We first present results with assumed linearity and without baseline confounders, which

provides the easiest intuition. Then we extend the results to structural equations without the

linearity restrictions and treatment randomization. For comparison with parametric constraints

below, we note that the nonparametric structural equations with no constraints are as follows:

C = gC(ϵC)

A = gA(C, ϵA)

L = gL(C,A, ϵL)

M = gM (C,A,L, ϵM )

Y = gY (C,A,L,M, ϵY ),

where gC , gA, gL, and gM are arbitrary functions of their arguments. And ϵC , ϵA, ϵL, ϵM and ϵY

are unspecified inputs for each variable. Importantly, throughout this section, we allow these

unspecified inputs to be arbitrarily dependent on one another and all specified variables. This

makes our setting more general then the nonparametric structural equations that are commonly

represented by directed acyclic graphs (Pearl, 1995, 2012).

5.1 Linear structural equations, no baseline confounders

Since C is empty, we consider the structural equations for A, L, M , and Y . In this subsection,

the notation technically only applies to one L and one M variables, but our expressions can

be easily extended to accommodate multiple L and M variables without compromising the

intuition.

Proposition 4. Under the following linear structural equations with constant coefficients (i.e.,

all α, β, γ terms are constants),

A = ϵA

L = α0 + α1A+ ϵL
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M = β0 + β1A+ β2L+ β3AL+ ϵM

Y = γ0 + γ1A+ γ2L+ γ3M + γ4AL+ γ5AM + γ6LM + γ7ALM + ϵY ,

we have NIE−NIER = (γ6+γ7)β3Var(ϵL), and NDE−NDER = γ7β2Var(ϵL)+γ7Cov(ϵL, ϵM ).4

Hence, under the linear structural equations, there are multiple sufficient conditions for

either the NIE or the NDE to coincide with their respective RIAs. The NIE and the NIER are

equivalent if 1) there is no AL interaction in the equation for M , i.e., β3 = 0; or 2) if there is no

LM interaction in the equation for Y , i.e., γ6 = γ7 = 0. The NDE and the NDER are equivalent

if 1) there is no three-way interaction ALM in the equation for Y , i.e., γ7 = 0; or 2) L does not

have an effect on M when A = 0, and there is no unaccounted common determinants of M and

L, i.e, β2 = 0 and Cov(ϵL, ϵM ) = 0. In summary, equivalences can be established by ruling out

certain interaction effects.

It is possible to have only one of the NIE and the NDE coincide with their RIA. When

only one of the natural effects equal its RIA, our test parameter in Section 3, TE− TER, will

capture the deviaion of the other natural effect from its RIA. The next subsection shows that

the intuitions from the linear analysis can be extended to the settings where the structural

equations are much more unrestricted.

5.2 Nonlinear structural equations with baseline confounders

Throughout this subsection, we focus on constraints on the structural equations for Y . Thus, we

maintain completely unconstrained structural equations for C, A, L, and M . Below, we let gY 1

and gY 2 denote arbitrary functions of their arguments. Thus, within these functions, the effects

of the variables are left completely unconstrained.

Proposition 5. If Y = (1 − A)gY 1(C,L,M, ϵY 1) + AgY 2(C,L, ϵY 2), NIE=NIER; If Y =

gY 1(C,A,L, ϵY 1) + gY 2(C,M, ϵY 2), NDE=NDER.

The first structural equation rules out any effect of M on Y when A = 1. The second

structural equation rules out AM and LM interactions in the equation for Y , in the sense

that the nonparametric function containing M is additively separable from the nonparametric

function containing A and L.

In summary, in the presence of treatment-induced confounders, it is still possible that

NIE = NIER or NDE = NDER. However, these equivalences require imposing constrains on

4Clearly, Proposition 4 is a special case of Proposition 2. Additionally, when M is binary, Proposition
4 recovers Proposition 1.
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relevant structural equations by ruling out interaction effects. The structural equation constraints

we present are sufficient but not necessary to establish equivalences between the natural effects

and the RIA. Nevertheless, they are derived with the goal of being maximally flexible, in the

sense that they allow as much complexity in functional form as possible without incurring other

strong constraints.

6 Related estimands

The theory we developed for causal mediation analysis proves to be useful for unifying three

long-standing literatures in causal inference. In causal inference, it is not unusual that a pair

of competing estimands is present, where one has a more natural interpretation and the other

is easier to identify. Apart from the natural mediation effects and their RIAs, we discuss two

other such pairs of estimands: the average treatment effect (ATE) versus the local average

treatment effect (LATE) in the IV context (Angrist et al., 1996); and what we call the natural

Mann-Whitney estimand and its RIA (Mann and Whitney, 1947). Specifically, we establish a

formal equivalence result between estimands in the IV literature and the mediation literature.

And we reveal a striking resemblance between the Mann-Whitney estimands and the mediation

estimands.

6.1 ATE and LATE

We first define the ATE and LATE estimands. In keeping with the notation we used for causal

mediation analysis above, we consider three temporally ordered variables, A, M , and Y . In the

IV context, A is the IV, M is the treatment, and Y is the outcome. Here, we focus on the case

where A and M are both binary, and A is randomized, which is a classic setting considered in

the IV literature (Angrist et al., 1996; Balke and Pearl, 1997). Then, the ATE is defined as

E(YM=1 − YM=0), and the LATE is defined as E(YM=1 − YM=0 | MA=1 = 1,MA=0 = 0), i.e., the

average effect of M on Y among those whose M value is induced to increase by an increase in A

(those who are the “compliers”). In this subsection, we explicitly write the assignment variables

in the potential outcomes to avoid ambiguity. Also note that the labelling of the “treatment”

variable differs between the IV and mediation contexts: in the IV context, the treatment refers

to M , while in the mediation context, it refers to A.

In the IV context, the estimand with a more natural interpretation is the ATE, while the LATE

requires weaker identifying assumptions (Robins and Greenland, 1996; Imbens, 2010; Aronow

and Carnegie, 2013; Wang and Tchetgen Tchetgen, 2018). Just like in the mediation context,
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applied researchers often interpret a LATE estimate as if it was the ATE (Aronow and Carnegie,

2013; Sarvet et al., 2023). We show that there exists a direct equivalence between ATE− LATE

and NIE − NIER under four standard identifying assumptions for the LATE: 1) Exclusion:

YA=a,M=m = YM=m, ∀{a,m}; 2) Independence: A |= {MA=1,MA=0, YA=1, YA=0}; 3) Relevance:

E(M | A = 1)−E(M | A = 0) > 0; and 4) Monotonicity: MA=1 ≥ MA=0 almost surely. We also

denote the identified functional called the Wald estimand as Wald := E(Y |A=1)−E(Y |A=0)
E(M |A=1)−E(M |A=0) .

Proposition 6. Under the assumptions of exclusion, independence, and relevance,

Wald−ATE =
Cov(MA=1 −MA=0, YM=1 − YM=0)

E(MA=1 −MA=0)
=

NIE−NIER

E(MA=1 −MA=0)
,

which, further under monotonicity, also equals LATE−ATE. Here, NIER is defined with C = ∅.

5

Thus, under the four assumptions identifying the LATE, the difference between the LATE

and the ATE is simply the difference between the NIE and the NIER scaled by the effect

of A on M . This means that, under these assumptions, the LATE differs from the ATE

if and only if the NIE differs from the NIER. For intuition on LATE − ATE, notice that

Cov(MA=1 − MA=0, YM=1 − YM=0) = Cov[1(MA=1 = 1,MA=0 = 0), YM=1 − YM=0] captures

selection into the subpopulation of compliers based on the effect of M on Y . If there is strong

selection, then the local average effect of M on Y among compliers must differ substantially

from the corresponding global average effect.

There is a long-standing literature on using the Wald estimand to estimate the ATE based

on exclusion, independence, relevance, and another additional assumption (Heckman, 1997;

Hernán and Robins, 2006; Wang and Tchetgen Tchetgen, 2018). A weak form of the additional

assumption has recently appeared in Hernán and Robins (2020, Section 16.3) and Hartwig et al.

(2023), which can be written as Cov(MA=1 −MA=0, YM=1 − YM=0) = 0. Proposition 6 shows

that this is, in fact, the weakest possible among such assumptions.

6.2 Natural Mann-Whitney estimand and its RIA

We define the natural Mann-Whitney estimand as E[1(Y1 ≥ Y0)], i.e., the probability of the

potential outcome under treatment being greater than or equal to the potential outcome under

control. It is often referred to as the probability of no harm (the probability of the treatment

not worsening the outcome), given that a larger value of Y is desired. This estimand is broadly

5Also, by Proposition 1 and the exclusion assumption, NIE−NIER = TE− TER.
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useful for scale-free evaluation of treatment effects, especially for ordinal outcomes.6 We call this

estimand a “natural” estimand, because it is an aggregation of an individual-level contrast of

potential outcomes.

The natural Mann-Whitney estimand is difficult to identify for the same reason that the NIE

and the NDE are difficult to identify: just like E(Y1,M0), the natural Mann-Whitney estimand

(non-linearly) involves the assignment of two different treatment values to the same individual.

Due to the fundamental problem of causal inference (Holland, 1986), the joint distribution of

two potential outcomes is impossible to nonparametrically identify even with a randomized

treatment.7 Hence, an assumption analogous to cross-world independence (Assumption 5) can

also be used to identify the natural Mann-Whitney estimand: Y1 |= Y0 (Greenland et al., 2020),

which can be relaxed to a conditional version: Y1 |= Y0 | C. However, even the conditional version

of this assumption is unlikely to hold, because it requires that all variables affecting Y under

both treatment and control are measured.8

Consequently, an alternative estimand has been used in practice: E[1(H1 ≥ H0)], where

Ha is a value randomly drawn from the marginal distribution of Ya. Clearly, this alternative

estimand has the interpretation of a RIA. In contrast to the natural Mann-Whitney estimand,

the Mann-Whitney RIA does not aggregate an individual-level contrast. On the other hand,

randomization of treatment does enable the identification of the Mann-Whitney RIA. The Mann-

Whitney RIA has a long history in statistics, dating back to the Mann-Whitney U test (Mann

and Whitney, 1947) and the Wilcoxon rank-sum test (Wilcoxon, 1945). Recent methodological

developments based on the Mann-Whitney RIA include the probability index model (Thas et al.,

2012), the win ratio (Pocock et al., 2012), the efficient estimation of the RIA (Mao, 2018), a

local version of the RIA in the presence of noncompliance (Mao, 2024), and the rank average

treatment effect (Lei, 2024).

Similar to the mediation literature, conflation of the natural Mann-Whitney estimand and

its RIA is pervasive even in methodological work. For example, in a textbook discussion on

the Mann-Whitney RIA, Thas (2010) claims that “If this conclusion is statistically significant,

it is very relevant evidence to a physician that most of his patients will be better off with the

treatment.” Wu et al. (2014) states “This allows us to make inference about the potential

outcome-based δ through the estimable quantity ξ...”, where δ and ξ are respectively the natural

6A related estimand, Pr(Y1 > Y0 | A = 1)/Pr(Y1 = 1 | A = 1), for a binary Y , is called the probability
of necessity (Tian and Pearl, 2000).

7By contrast, the TE is a linear combination of two treatment values, avoiding the cross-world
assignment problem simply due to the equality E(Y1 − Y0) = E(Y1)− E(Y0).

8Assumptions of the same form are also invoked to identify principal stratum estimands in clinical trial
contexts (Hayden et al., 2005; Qu et al., 2020), which is a practice extensively criticized by Vansteelandt
and Lancker (2024).
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Mann-Whitney estimand and its RIA. And Demidenko (2016) names the Mann-Whitney RIA

the “D-value” and argues that “The D-value has a clear interpretation as the proportion of

patients who get worse after the treatment”, in the context where a smaller value of a continuous

Y is desirable.

Interestingly, despite (or maybe due to) recurrent confusion, the literature on Mann-Whitney

estimands has been clarifying the important differences between the natural Mann-Whitney

estimand and its RIA since decades before Miles (2023) pioneered an analogous inquiry in causal

mediation analysis. The early work of Hand (1992) already notes the possibility of sign reversal

in the relationship between the natural Mann-Whitney estimand and its RIA (when 1/2 is

subtracted from both), which has been known as Hand’s paradox. Multiple works since have

considered various DGPs under which Hand’s paradox is present or absent (Hand, 1992; Fay

et al., 2018; Greenland et al., 2020). This line of work is in the same spirit as our theoretical

analysis on the relationship between the natural mediation estimands and their RIAs.

Lastly, there is also a covariance representation for the difference between the natural

Mann-Whitney estimand and its RIA.

Proposition 7.

E[1(Y1 ≥ Y0)]− E[1(H1 ≥ H0)] =
∑
t∈T

∑
s∈S

1(t ≥ s) Cov[1(Y1 = t),1(Y0 = s)],

where T and S are respectively the supports of Y1 and Y0. When Y is binary with the support

of {0, 1}, the expression simplifies to Cov(Y1, Y0).

Clearly, the natural Mann-Whitney estimand differs from its RIA to the extent that Y1 and

Y0 are dependent on each other. This is in parallel to the natural mediation effects differing

from their RIAs to the extent that Ma and Ya′,m are dependent. By redefining the estimands

using random draws, RIAs in both cases miss a naturally occurring dependency. The thorny

issue created by cross-world treatment assignments for identification cannot be magically waved

away by redefining the estimand.

7 Conclusion

In this paper, we answer the question of when natural mediation estimands differ from their

randomized interventional analogues. In order to do so, we provide tools for both empirical

testing and theoretical reasoning to researchers who wish to estimate and interpret the RIAs.

Our test and theories are complementary to one another: when the researcher empirically rejects

the null hypothesis of the test, they can conclude with confidence (up to the chosen significance
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level) that the natural effects and the RIAs are different ; when the researcher has theoretical

support for specific structural equations, they may reasonably posit that a particular natural

effect and its corresponding RIA are equivalent. With respect to the two theoretical perspectives,

the covariance perspective is complete, in the sense that it provides necessary and sufficient

conditions for the equivalence between the natural effects and the RIAs; while the structural

equation perspective provides simple and intuitive sufficient conditions of equivalence even when

M is vector-valued with arbitrary distributions.

A common dilemma facing researchers across three fields of causal inference (causal mediation

analysis, instrumental variable, and Mann-Whitney estimands) is that a natural estimand is

more interpretively appealing but hard to identify while an alternative estimand is less appealing

but easier to identify. Going forward, we recommend four strategies to applied researchers in all

three areas. First, we join Sarvet et al. (2023) to call for more precision in interpreting estimates

of the alternative estimands. Second, with the addition of our two theoretical perspectives in

this paper, now researchers in all three areas are able to reason about when the natural estimand

coincides with, or at least does not have the opposite sign to, the alternative estimand. Third,

in all three areas, bounding methods have been developed to provide partial identification for

the natural estimands (e.g., Miles et al., 2017; Swanson et al., 2018; Lu et al., 2020). Fourth, in

causal mediation analysis, we uniquely provide a falsification test for interpreting the RIAs as

the natural mediation effects, which goes beyond theoretical reasoning and provides empirical

guidance.
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Appendices

A1. Proof of Proposition 1

The NIE and NDE are defined in terms of E(Ya,Ma′ ) for two treatment values (a, a′). When M

is binary and its support is {0, 1}, we rewrite this quantity just using its definition:

E(Ya,Ma′ )

= E[Ya,1Ma′ + Ya,0(1−Ma′)]

= E(Ya,0) + E[Ma′(Ya,1 − Ya,0)]

= E(Ya,0) + E{E[Ma′(Ya,1 − Ya,0) | C]}.

The NIER and NDER are defined in terms of E(Ya,Ga′ ) for two treatment values (a, a′).

When M is binary, we again rewrite this quantity using its definition:

E(Ya,Ga′ )

= E[E(Ya,Ga′ | C)]

= E[E(Ya,1 | Ga′ = 1, C) Pr(Ga′ = 1 | C) + E(Ya,0 | Ga′ = 0, C) Pr(Ga′ = 0 | C)]

= E{E(Ya,1 | C) E(Ma′ | C) + E(Ya,0 | C)[1− E(Ma′ | C)]}

= E(Ya,0) + E{E(Ma′ | C)[E(Ya,1 − Ya,0 | C)]}

= E(Ya,Ma′ )− E[Cov(Ma′ , Ya,1 − Ya,0 | C)].

Then using the results above, we have the following representations:

NIE = E(Y1,M1 − Y1,M0) = E[(M1 −M0)(Y1,1 − Y1,0)]

NIER = E(Y1,G1 − Y1,G0) = E[E(M1 −M0 | C) E(Y1,1 − Y1,0 | C)]

NDE = E(Y1,M0 − Y0,M0) = E(Y1,0 − Y0,0) + E{M0[Y1,1 − Y1,0 − (Y0,1 − Y0,0)]}

NDER = E(Y1,G0 − Y0,G0) = E(Y1,0 − Y0,0) + E{E(M0 | C) E[Y1,1 − Y1,0 − (Y0,1 − Y0,0) | C]}.

Hence,

NIE = NIER + E[Cov(M1 −M0, Y1,1 − Y1,0 | C)]

NDE = NDER + E{Cov[M0, Y1,1 − Y1,0 − (Y0,1 − Y0,0) | C]}

TE = TER + E[Cov(M1, Y1,1 − Y1,0 | C)− Cov(M0, Y0,1 − Y0,0 | C)].
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When C is an empty set, we obtain the results shown in Proposition 1.

A2. Proof of Propositions 2 and 3

The NIE and NDE are still defined in terms of E(Ya,Ma′ ) for two treatment values (a, a′). Treating

M as a vector of continuous variables, we rewrite this quantity using its definition:

E(Ya,Ma′ )

= E

[∫
Ya,m1(Ma′ = m)dm

]
=

∫
E[Ya,m1(Ma′ = m)]dm

=

∫
E{E[Ya,m1(Ma′ = m) | C]}dm,

where the first equality holds by treating the Dirac delta function 1(Ma′ = m) as a limiting case

of a probability density function concentrated at Ma′ = m. This allows us to express a function

of Ma′ as an integral over the support of Ma′ .

The NIER and NDER are defined in terms of E(Ya,Ga′ ) for two treatment values (a, a′). We

rewrite this quantity as follows:

E(Ya,Ga′ )

= E[E(Ya,Ga′ | C)]

=

∫∫
E(Ya,m | Ga′ = m,C = c)fGa′ |c(m)fC(c)dmdc

=

∫∫
E(Ya,m | C = c)fMa′ |c(m)fC(c)dmdc

=

∫∫
E(Ya,m | C = c) E[1(Ma′ = m) | C = c]fC(c)dmdc,

where the last equality is by the property of the Dirac delta function 1(Ma′ = m).

Therefore,

NIE = E(Y1,M1 − Y1,M0) =

∫
E{E{[1(M1 = m)− 1(M0 = m)]Y1,m} | C}dm

NIER = E(Y1,G1 − Y1,G0) =

∫
E{E[1(M1 = m)− 1(M0 = m) | C] E(Y1,m | C)}dm

NDE = E(Y1,M0 − Y0,M0) =

∫
E{E[(Y1,m − Y0,m)1(M0 = m) | C]}dm

NDER = E(Y1,G0 − Y0,G0) =

∫
E{E[(Y1,m − Y0,m) | C] E[1(M0 = m) | C]}dm.
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And

NIE = NIER +

∫
E{Cov[1(M1 = m)− 1(M0 = m), Y1,m | C]}dm

NDE = NDER +

∫
E{Cov[Y1,m − Y0,m,1(M0 = m) | C]}dm

TE = TER +

∫
E{Cov[Y1,m,1(M1 = m) | C]} − E{Cov[Y0,m,1(M0 = m) | C]}dm.

When M is a vector of discrete variables, we replace the integrals with summations to obtain

the results in Proposition 2.

Proposition 3 similarly follows from the expressions of E(Ya,Ma′ ) and E(Ya,Ga′ ) derived above.

A3. Proof of Proposition 4

We let La denote the potential values of L under treatment assignment a. Under the structural

equations of Proposition 4,

Y1M1 = γ0 + γ1 + (γ2 + γ4)L1 + (γ3 + γ5)M1 + (γ6 + γ7)L1M1 + ϵY

Y1M0 = γ0 + γ1 + (γ2 + γ4)L1 + (γ3 + γ5)M0 + (γ6 + γ7)L1M0 + ϵY

Y0M0 = γ0 + γ2L0 + γ3M0 + γ6L0M0 + ϵY

Y1G1 = γ0 + γ1 + (γ2 + γ4)L1 + (γ3 + γ5)G1 + (γ6 + γ7)L1G1 + ϵY

Y1G0 = γ0 + γ1 + (γ2 + γ4)L1 + (γ3 + γ5)G0 + (γ6 + γ7)L1G0 + ϵY

Y0G0 = γ0 + γ2L0 + γ3G0 + γ6L0G0 + ϵY .

Hence,

NDE = γ1 + (γ2 + γ4) E(L1)− γ2 E(L0) + γ5 E(M0) + (γ6 + γ7) E(L1M0)− γ6 E(L0M0)

NDER = γ1 + (γ2 + γ4) E(L1)− γ2 E(L0) + γ5 E(G0) + (γ6 + γ7) E(L1G0)− γ6 E(L0G0)

NIE = (γ3 + γ5) E(M1 −M0) + (γ6 + γ7) E(L1M1 − L1M0)

NIER = (γ3 + γ5) E(G1 −G0) + (γ6 + γ7) E(L1G1 − L1G0).

Noting that E(Ma) = E(Ga), and

E(LaMa′)− E(LaGa′)

= E(LaMa′)− E(La) E(Ga′)

= Cov(La,Ma′)
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= Cov[α0 + α1a+ ϵL, β0 + β1a
′ + β2(α0 + α1a

′ + ϵL) + β3a
′(α0 + α1a

′ + ϵL) + ϵM ]

= (β2 + β3a
′)Var(ϵL) + Cov(ϵL, ϵM ).

we have

NDE−NDER = (γ6 + γ7) Cov(L1,M0)− γ6Cov(L0,M0)

= γ7β2Var(ϵL) + γ7Cov(ϵL, ϵM )

NIE−NIER = (γ6 + γ7){Cov(L1,M1)− Cov(L1,M0)}

= (γ6 + γ7)β3Var(ϵL).

A4. Proof of Proposition 5

For the NDE part, our proof leverages an assumption in Robins (2003): Y1,m − Y0,m is a random

variable not dependent on m. Originally, this assumption was proposed to identify NDE in the

presence of treatment-induced confounding. We first prove that this assumption is sufficient

for NDE = NDER. Then we prove that the structural equation in Proposition 5 is, in turn,

sufficient for this assumption to hold.

According to our Proposition 2, we just need to show that under the assumption of Robins

(2003),
∫
E{Cov[Y1,m − Y0,m,1(M0 = m) | C]}dm = 0. Let Y1,m − Y0,m = B, then,

∫
E{Cov[1(M0 = m), Y1,m − Y0,m | C]}dm

=

∫
E{E[1(M0 = m)B | C]− E[1(M0 = m) | C] E(B | C)}dm

= E

{
E

[∫
1(M0 = m)dmB | C

]
−
∫

fM0(m | C)dmE(B | C)

}
= E[E(B | C)− E(B | C)] = 0.

Next, we show that, if Y = gY 1(C,A,L, ϵY 1) + gY 2(C,M, ϵY 2), the assumption of Robins

(2003) is satisfied. Under this structural equation for Y ,

Y1,m − Y0,m

= gY 1(C, 1, gL(C, 1, ϵL), ϵY 1) + gY 2(C,m, ϵY 2)− gY 1(C, 0, gL(C, 0, ϵL), ϵY 1)− gY 2(C,m, ϵY 2)

= gY 1(C, 1, gL(C, 1, ϵL), ϵY 1)− gY 1(C, 0, gL(C, 0, ϵL), ϵY 1),

which is not dependent on m.

For the NIE part, we propose a novel condition that is analogous to the assumption of
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Robins (2003) used above: Y1,m is a random variable not dependent on m. We refer to

this condition as the analogous assumption. We first show that the analogous assumption

is sufficient for NIE to be equal to NIER. According to Proposition 2, it suffices to show∫
E{Cov[1(M1 = m)− 1(M0 = m), Y1,m | C]}dm = 0. Let Y1,m = B, then under the analogous

assumption,

∫
E{Cov[1(M1 = m)− 1(M0 = m), Y1,m | C]}dm

=

∫
E{Cov[1(M1 = m)− 1(M0 = m), B | C]}dm

=

∫
E{E[1(M1 = m)B | C]− E[1(M0 = m)B | C]

− E[1(M1 = m)− 1(M0 = m) | C] E(B | C)}dm

= E{E[
∫
1(M1 = m)dmB | C]− E[

∫
1(M0 = m)dmB | C]

− E[

∫
1(M1 = m)− 1(M0 = m)dm | C] E(B | C)}

= E{E[B | C]− E[B | C]}

= 0.

Then, we show that if Y = (1 − A)gY 1(C,L,M, ϵY 1) + AgY 2(C,L, ϵY 2), the analogous

assumption is satisfied. Under this structural equation, Y1,m = gY 2(C, gL(C, 1, ϵL), ϵY 2), which

clearly does not depend on m.

A5. Proof of Proposition 6

Wald

=
E(YA=1 − YA=0)

E(MA=1 −MA=0)

=
E[(MA=1 −MA=0)(YM=1 − YM=0)]

E(MA=1 −MA=0)

=
E(MA=1 −MA=0) E(YM=1 − YM=0) + Cov(MA=1 −MA=0, YM=1 − YM=0)

E(MA=1 −MA=0)

= ATE +
NIE−NIER

E(MA=1 −MA=0)
.

The first equality is by the independence assumption, the second is by the exclusion assumption

(equation 9 in Angrist et al. (1996)), the third is by the definition of covariance, the fourth

is by Proposition 1 and the exclusion assumption. The relevance assumption ensures that the

denominator is nonzero. Finally, under assumptions of exclusion, independence, relevance, and

monotonicity, the classic result of Angrist et al. (1996) equates Wald with LATE.
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A6. Proof of Proposition 7

E[1(Y1 ≥ Y0)]− E[1(H1 ≥ H0)]

=

∫∫
1(t ≥ s)fY1,Y0(t, s)dtds−

∫∫
1(t ≥ s)fH1,H0(t, s)dtds

=

∫∫
1(t ≥ s)fY1,Y0(t, s)dtds−

∫∫
1(t ≥ s)fH1(t)fH0(s)dtds

=

∫∫
1(t ≥ s)fY1,Y0(t, s)dtds−

∫∫
1(t ≥ s)fY1(t)fY0(s)dtds

=

∫∫
1(t ≥ s) E[1(Y1 = t)1(Y0 = s)]dtds−

∫∫
1(t ≥ s) E[1(Y1 = t)] E[1(Y0 = s)]dtds

=

∫∫
1(t ≥ s) Cov[1(Y1 = t),1(Y0 = s)]dtds.

When Y is discrete, this becomes the expression in Proposition 7. Furthermore, when the

support of Y is {0, 1},

∑
t∈T

∑
s∈S

1(t ≥ s) Cov[1(Y1 = t),1(Y0 = s)]

= Cov[1(Y1 = 1),1(Y0 = 1)] + Cov[1(Y1 = 1),1(Y0 = 0)] + Cov[1(Y1 = 0),1(Y0 = 0)]

= E[1(Y1 = 1)1(Y0 = 1)]− E[1(Y1 = 1)] E[1(Y0 = 1)]

+ E[1(Y1 = 1)1(Y0 = 0)]− E[1(Y1 = 1)] E[1(Y0 = 0)]

+ E[1(Y1 = 0)1(Y0 = 0)]− E[1(Y1 = 0)] E[1(Y0 = 0)]

= E(Y1Y0)− E(Y1) E(Y0)

+ E[Y1(1− Y0)]− E(Y1)[1− E(Y0)] + E[(1− Y1)(1− Y0)]− E[(1− Y1)] E[(1− Y0)]

= E(Y1Y0)− E(Y1) E(Y0) = Cov(Y1, Y0).
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